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The present work consists of the development of three finite element models based in high order shear 

deformation theory (HSDT) that are applied to the static and dynamic analysis of laminated composite beams. 

The developed models are based on Loja [1] proposals and they consider the mathematical formularization 

presented by Correia [2]. Fifteen case studies of different loads and boundary conditions were studied. Matlab 

was the calculus software tool adopted, in consonance with its great academic relevance. 
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1 INTRODUCTION 

 
In this new millennium, environmental concerns 
have taken a major relevance for Earth population, 
due to politicians’ initiative as well as due to the 
increase of death numbers by nature catastrophic 
phenomena, which are directly connected to all 
negative global warming effects. 
This way world population has developed a green 
conscious that constantly seeks for explanation 
answers as well as new energetic solutions. Facing 
this new challenge the industry sector is obliged to 
reorganize its priorities in order to produce a new 
green and clean energy. For this reason all around 
the world efforts are being made in optimizing 
methodologies, construction processes and 
structural mechanics. 
The aeronautical civil world is no exception, 
because its main income source depends on the 
trust of the costumer and on the reliabity of the 
entire aeronautical structures. This way we have 
been watching a significant evolution in 
infrastructures implantation, as well as in the 
assembly processes of the airplane itself. 
Statistically the airplane is still the safest way of 
transportation on Hearth but it is also the most 
pollutant. Engine aeronautical industry as made a 
long way in the last years seeking for efficiency, 
struggling against material thermodynamic 
limitations, such as the maximum allowed 
temperature on the turbine blades.  
It is then clear that it is necessary to consider the 
Environment natural balance from different points 
of view, for example, the reduction of fuel 
consumption per flight hour. 
Nowadays we think that the best fuel consumption 
reduction is achieved by reducing the height of the 
entire airplane, through structural optimization. In 

this engineering field the composite materials are 
the key element due to its structural properties and 
applications. With them it is possible to produce a 
high structural stiffness with a significant height 
reduction, which applied to an entire airplane, has 
major effects in reducing the fuel consumption and 
therefore the airplane pollution. 
The use of composite materials in civil aviation by 
the main manufactures is nowadays a reality. The 
new Airbus A380 has nearly 30% of composite 
materials and the new airplane from Boeing B78, 
also known as Dreamliner, with nearly 50% of 
composite materials. This last one is also famous by 
its low fuel consumption. 
Nevertheless all this industrial development was 
only possible due to a wide investigation conducted 
by several scientists, providing all necessary tools 
to understand this technology. 
Their studies revealed that the mechanical 
behaviour of ply made reinforced composite is 
strongly dependent of the reinforcement fibber 
direction. For this reason a laminate structure has to 
be designed in order to satisfy all particular requests 
from a specific application, in order to extract the 
maximum structural advantages from these 
materials.  
Therefore it is crucial to provide to the stress 
analyst the proper tools, such as optimized 
numerical models for these specific materials, so 
that he can perform static, dynamic, fatigue and 
buckling analysis during the structural design 
methodology. With this aim in mind we have 
developed a study in composite laminated beams, 
based on the high shear deformation theory, with no 
need of additional correction factors. 
Three models have been developed based on the 
models presented by Loja [1] and implemented in 
accordance with the mathematical formulation 
presented by Correia [2].  
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MATLAB was the software tool used accordingly 
with its academic relevance in IST. Thanks to this 
tool it is possible to take advantage of a wide set of 
interface user friendly tools, witch allows an 
optimization in the investigation’s time quality. 
 

2 DISPLACEMENTS AND 

STRAIN FIELDS 

 

 
Figure 1-Beam axis  

 
 
Considering the laminate geometry and the 
orthogonal referential xz in Fig. 1, by neglecting 
warping, the axial displacement u and the 
displacement component w, are expanded by 
Taylor’s series up to the cubic and second power on 
z-direction respectively. The displacement field can 
be represented in matrix form as:  
 
u=[Z]q ;                    u=[u(x,t) w(x,t)]T ; 
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where q is the vector of generalized displacements, 
representing the appropriated Taylor’s series terms 
defined along the x- axis and z=0. All generalized 
displacement components are function of time t. 
The first three terms are related with displacements 
and rotations as defined on Fig. 1. The remaining 
parameters are the corresponding higher-order 
terms representing higher-order transverse cross-
sectional deformation modes, which have difficult 
physical interpretation. Assuming that plane 
sections remain plane after deformation, but not 
perpendicular to the geometrical axis one obtains 
the first-order shear deformation displacement field 
for the Timoshenko’s model (MTT). Further, 
considering that normals to the reference surface 
remain normal after deformation. i.e. neglecting 

transverse shear strains yields xwy ∂∂= /00θ , 

then the corresponding Euler-Bernoulli model 
(EBT) can be formulated, Fig. 2. 

 
Figure 2-Comparison between deformations 

due to transverse shear a) Classic theory; b) 

Mindlin-Timoshenko c) HSDT 
 
Considering the kinematics relations and the HSDT 
displacement field Eq. (1), the strain field is 
obtained as. 
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For the HSDT model, normal stress σx and σz are 
considered and a non-linear variation through the 
thickness is assumed. This nonlinearity is also 

extended to the shear stress xzτ . Considering the 

orthogonal referential xz, the constitutive relation 
for an orthotropic layer, which have an arbitrary 
fibber orientation, are related to the strains trough 
the relation: 
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where the terms of matrix Q , for the kth layer are 

given in Reddy [3]. 
 

3 FINITE-ELEMENT MODEL 

 
A four node beam element was developed, with 
seven degrees of freedom per node for static and 
free vibrations. The displacement field can be 
represented as. 
 

ee ZNqu =  ; 
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     (4) 
 
where N is a matrix with cubic Lagrange functions 
and qe the element nodal displacement vector. 
Hence the strain field is given by. 
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 where Bbm and Bs are the transformation matrix 
between strains and displacements, for bending and 
shear respectively. The same are given by. 
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 where J is the Jacobian from the transformation. 
By applying Hamilton’s variational principle to the 
total Lagrangean for the eth element, one obtains 
the following equilibrium equation. 
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..

 

     (7) 

where Qe is the element load vector and 
..

eq is the 

element acceleration vector. For harmonic 
vibrations one can obtain: 
 

eeee qMqK
2ω=   

     (8) 
 
Where ω is the natural frequency.  And for a static 
solution: 
 

eee QqK =  

     (9) 
 
The element stiffness matrix is. 
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 where NL represents the number of plies, b is the 
width of the beam and J is the Jacobian of the 

transformation. Matrix 
bm

kD and 
s

kD  are given by. 
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In order to avoid Locking effects the integration 
referring to shear was made numerically. 
The Mass matrix can be obtained by. 
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 where hk is the distance between the medium 
reference surface and upper surface from ply k, hk-1 

is the distance between the medium reference 
surface and lower surface from ply k. 

4 APPLICATIONS 

 
Some illustrative numerical results are obtained 
using the present high order shear deformation 
theory model HSDT, for static and free vibrations, 
to show the adequacy to different situations. 
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4.1 Static analysis 

4.1.1 Isotropic simply supported rectangular 

cross-section beam 

 
To study the performance of the HSDT model for 
different length/thickness ratios a simply supported 
straight beam type structure subjected to a 
uniformly distributed loading. pz=1 N/m was 
considered. The material and geometrical properties 
are E=200Gpa (Young Modulus), b=0.01 m (width) 
and h=0.01 m (thickness). Table 1 shows the 
maximum transverse displacements in x=L/2 and 
z=0, obtained with EBT, MTT and HSDT models. 
A discretization in twenty beam elements was use. 
It can be observed that the HSDT model predicts 
the displacements with a good accuracy, even for 
the lower L/h ratio. For lengths to thickness ratios 
above 10, all discrete models can predict the 
maximum transverse displacement with a good 
precision.  
 
Table 1-Maximum deflection w (m) at z = 0. 

 

 

Ratio 

L/h 

Elasticity 

P. stress 

EBT 

Model 

MTT(k=5/6) 

Model 

HSDT 

Model 
1 2.563x10_12 7.796x10_13 2.655x10_12 2.774x10_12 
2 1.963x10_11 1.247x10_11 1.999x10_11 2.044x10_11 
4 2.285x10-10 1.996x10-10 2.298x10-10 2.317x10-10 
10 7.990x10_09 7.796x10_09 7.995x10_09 8.009x10_09 
20 1.257x10_07 1.247x10_07 1.256x10_07 1.257x10_07 
50 4.887x10_06 4.873x10_06 4.882x10_06 4.886x10_06 

100 7.814x10_05 7.796x10_05 7.800x10_05 7.812x10_05 

4.1.2 Clamped laminated beam-box under 

concentrate load 

 

 
Figure 3 –Beam-box section cut geometry 
 
In this example a beam box with no sectional 
symmetry was used , Fig. 3. It is a one side clamped 
beam with a concentrate vertical load, P, on the free 
side. Its material and geometrical properties are:  
balmaesquerda=balmadireita=50mm; 
bbanzosuperior=bbanzoinferior=80mm; 
halmaesquerda=halmadireita=20mm; hbanzosuperior=20mm; 
hbanzoinferior=30mm; E=200GPa, P=100N 
 
 
 
Table 2- Displacements from beam-box 

Ratio 

L/h 

Loja [1] 

Classic T. 

EBT 

Model 

MTT(k=5/6) 

Model 

HSDT 

Model 
2 2.157x10-7 2.156x10-7 2.656x10-7 2.730x10-7 
4 3.371x10-6 3.369x10-6 3.494x10-6 3.505x10-6 
10 2.696x10-5 2.695x10-5 2.720x10-5 2.719x10-5 
20 2.157x10-4 2.156x10-4 2.161x10-4 2.159x10-4 
50 3.371x10-3 3.369x10-3 3.369x10-3 3.367x10-3 

100 2:696x10-2 2:695x10-2 2:694x10-2 2:695x10-2 

 
The main results obtain are presented in Table 2. A 
perfect correspondence between EBT Model and 
the Classic theory present by Loja is observed as 
expected, because we are comparing outputs 
obtained with the equivalent theory. 
Model MTT and HSDT are presenting higher value 
solutions because shear is also considered in these 
models.  

4.1.3 Laminated beam under three point 

bending 

 
The results of the HSDT discrete model were 
compared with a standard benchmark test of a 
laminated strip under three point bending, Fig. 4. 
This test has been has been designed to validate 
laminate beams. The geometric, loading and 
mechanical properties are L=0.05m (length), b=10-2 
m, h=10-3 m, P=100N (x=0.025 m), E1=100GPa, 
E3=5GPa, G13=3GPa, ν13=0.4. A discretization of 
ten elements was used for the test. Table 3 shows 
the results at middle span, for maximum transverse 
displacement w, and normal stress σx , both 
evaluated at point E, and shear stress τ xz at point 
D. A good agreement is obtained with the target 
results. 
 

 
Figure 4 -Laminate beam under three-point 

bending 

 

Table 3- Maximum deflection and stresses 

Model W(mm) (MPa) (MPa) 
BENCHmark -1.060 683.9 -4.1 
Loja -1.059 683.2 -4.6 
HSDT -1.058 683.1 -4.7 
 

4.1.4 Simply supported laminate T-beam 

This example presented by Silva et al [14], 
considers a simply supported laminated composite 
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T-beam, which was loaded accordingly with Figure 
5. The geometric and material properties are: 
(ug) – VEER45, R365 

E1=39.25Gpa; E3=4.5Gpa; hlayer=0.35mm; 
G13=3.0Gpa;  ν13=0.29; 

(fg) – 1581-ES-67: 
E1=E3=22.5Gpa; hcamada=0.24mm; 
G13=2.85Gpa;  ν13=0.28; 

Stacking sequence: 
Web: [45°fg/0°ug/45°fg/(0°ug)2/45°fg/0°ug]s 

Flange: 
[((0°fg/45°fg)3/0°fg)2/0°ug/45°fg/(0°ug)2/45°fg/0°u
g/45°fg] 
 

 
Figure 5 -Laminate T-beam in four point 

 Bending 

 
Silva et al [14], carried out experimental and 
numerical studies using a commercial finite element 
program. A discretization in ten HSDT beam 
elements has been used. The main results are 
presented in Table 4. One can observe good 
correspondence between the obtained results. 

 

Table 4- Displacements and strains of T-

beam  

Model 
Neutral 

axis 
3

max 10xε  3
min 10xε  

EBT 29.83 11.94 -4.07 
FEM 28.64 11.00 -4.38 
Experimental 30.51 13.08 -4.06 
Loja (1995) 30.45 12.27 -3-77 
MTT 30.14 10.98 -4.11 
HSDT 30.72 12.20 -3.90 
 

4.2 Free vibrations analysis 

4.2.1 BENCHmark -Isotropic beam 

clamped-supported 

This test was present in BENCHmark. In this 
example it is used one beam clamped-supported 
with the following properties: L=10.0m, b=2.0m, 
h=2.0m E=200GPa, ν13=0.3, ρ=8000Kg/m2. 
For the clamped side the boundary conditions used 
are: u0=w0=u0*=θ0=u0*=ßz=θy

0*=0 and for the 
supported side: w0=w0*=ßz=0. 
The frequencies for vibration modes are presented 
in Table 5, for a discretization of twenty elements 
and a good agreement with the expected values is 
observed.  
 
 

Table 5 -Natural Frequencies (Hz) 

BENCH

mark 
Loja [1] 

Model 

MTT 

Model 

HSDT 
042.65 040.50 039.58 040.14 
148.31 142.37 143.62 148.76 
284.55 275.67 250.00 262.37 

 

4.2.2 Orthotropic beam simply supported 

 
In this example a simply supported beam with 
rectangular section, as presented by 
Chandrashekhara, was considered. The following 
material and geometrical properties were used: L=1 
in, h=1 in, E1=E3=21.0x106 psi, G13=0.6x106 psi, 
ν13=0.3, ρ=0.13x10-3eb.s2.in-4. 
In Table 6 is presented a comparison between the 
natural frequencies obtain by the classic theory, by 
Chandrashekhara and by Loja [1]. 
 
Table 6 – Natural frequencies (KHz), 

L/h=15 

CLT 
Chand. 

[18] 

Loja 

[1] 

Model 

MTT 

Model 

HSDT 
0.813 0.755 0.755 0.756 0.755 
3.250 2.548 2.555 2.495 2.496 
7.314 4.716 4.785 4.536 4.557 
13.002 6.960 7.201 6.618 6.687 
20.316 9.194 9.936 8.681 8.825 
 
Results presented by Chandrashekhara et al [18] 
were obtained with a first shear deformation theory, 
while results presented for classic theory can be 
found in Vinson et al [17]. Loja [1] has also used a 
HSDT. 
Accordingly with Table 6, one can observe a good 
correspondence between the Models HSDT and 
MTT and the solution presented by Loja and 
Chandrashekhara. 

4.2.3 Clamped-clamped laminated beam 

This example refers to an orthotropic beam, 
presented by Dipak et al [10]. He used a nine node 
plate element, based in a high order shear theory. 
The beam used has the following properties: 
L=0.1905m, E1=129.207GPa, E3=9.425GPa, 
G13=4.30GPa, ν13=0.3, ρ=1550.06 Kg.m-3. 
 
The multiplier used to adimensionalize the obtain 
frequencies is: 

IE

A
wLw

3

2 ρ
=    

   (11) 
 
 
 
 

300mm 

 60 mm 

 40 mm 
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Table 7- Non-dimensional fundamental 

frequency  

L/h=60 0/90/0/90 
0/30/-

30/0 

0/45/-

45/0 

0/60/-

60/0 

EBT 49.58 61.88 55.35 51.03 

MTT 62.54 87.86 83.11 78.01 

HSDT 54.64 87.42 79.96 69.58 

Dipak 55.86 77.95 77.05 76.62 

Loja 57.87 72.34 65.25 60.73 

 
As we can see in Table 7, the obtain results reveal 
good agreements with the results obtain by Dipak 
and Loja, except for the model EBT. 

5 CONCLUSIONS 

 
Three FEM models have been developed for 
predicting the static and dynamic behaviour of 
composite laminate beams, representing three 
different theories: High shear deformation theory, 
Mindlin–Timoshenko theory and Euler-Bernoulli 
theory.   
With these three models we have studied several 
beams under different load conditions and DOF 
constraints. 
For the performed analysis one can conclude that 
the model based on the high order shear 
deformation theory is the one presenting better 
results in accordance with the scientific articles 
published in this area for thick composite beams. 
For non thick beams, the models based on Mindlin-
Timoshenko and Euler–Bernoulli have also 
presented consistent results with scientific 
published data, and since they consume less 
computation time one can conclude that for these 
case it is not necessary to use more complex 
theories. 
For dynamic behaviour prediction the high shear 
deformation theory has presented some advantages 
in relation to the other two theories, especially for 
the higher vibration modes. 
During this work several application tools have 
been development in the MATLAB software 
platform used. Its use has revealed the major 
aspects from this software and has significantly 
increased the investigation’s time quality. 
 

6 REFERENCES 

1. Loja, M.A.R.; Barbosa, J.I; & Mota Soares, 
C.M, "Static and Dynamic Behaviour of 

Laminated Composite Beams", Journal of 
Structural Stability and Dynamics, Vol. 
1(4):545-560, 2001 

2. Correia, Franco, "Modelos de Elementos 

Finitos Na Optimização de Estruturas 

Adaptativas em Materiais Compósitos", 
Dissertação para obtenção do grau de doutor 

em engenharia mecânica. Universidade 
Técnica de Lisboa, IST, 2001. 

3. Reddy, J.N, "Mechanics of Laminated 

Composite Plates", CRC Press, USA, 1997. 
4. Surana, K. S. & Nguyen, S. H., "Two-

Dimensional Curved Beam Element with 

Higher Order Hierarchical Transverse 

Approximation for Laminated Composites”, 
Composite Structures, Vol. 36(3), pp. 499-511, 
1990. 

5. Yuan, F. & Miller, R. E. (1990), "A Higher 

Order Finite Element for Laminated Beams", 
Composite Structures, Vol. 14, pp. 125-150. 

6. Kant, T. & Manjunatha, B. S., "Higher-Order 

Theories for Symmetric and Unsymmetrical 

Fibber Reinforced Beams with Co Finite 

Elements", Finite Elements in Analysis and 
Design, Vol. 6, pp. 303-320, 1990. 

7. Manjunatha, B.S. & Kant, T. (1993), "New 

Theories for Symmetric/ Unsymmetric 

Composite and Sandwich Beams with Co 

Finite Elements", Composite Structures, Vol. 
23, pp. 61-73. 

8. Reddy, J. N. (1993), "An Introduction to the 

Finite Element Method", McGraw Hill, USA. 
9. Davalos, J. F.; Kim, & Barbero, E. J, (1994). 

“Analysis of Laminated Beams with a Layer-

wise Constant Shear Theory. Composite 

Structures”, Vol. 28, pp.241-253. 
10. Dipak, Kr M. & Sinha, P. K. (1994), "Bending 

and Free Vibration Analysis of Shear 

Deformable laminated Composite Beams by 

Finite Element Method", Composite Structures, 
Vol. 29, pp.421-431. 

11. Loja, M.A.R; Barbosa, J.I. & Mota Soares, 
C.M, "Buckling Behaviour of Laminated Beam 

Structures Using a Higher Order Model", 
Composite Structures, vol.38, 119-131, 1997. 

12. Owen, D. R. & Hinton, E. "Finite Elements in 

Plasticity", Pineridge Press Limited, 
Swansea.Uk, 1980. 

13. BENCHmark. “Composite Benchmarks- Some 

new developments”, NAFEMS, National 
Engineering Laboratory, East Kilbridge, 
Glasgow G75 OQU UK, pp. 2-3, 1994. 

14. Silva, A.; Travassos, J.; Freitas, M. M & Mota 
Soares, C. M. "Mechanical Bending Behaviour 

of composite T-beams", Composite Structures, 
Vol. 25, pp. 579-586, 1993. 

15. Abramovich, H.; Eisenberger, M. & Shulepov, 
O., "Vibrations of non-symmetric composite 

beams", Composite Engineering, Vol. 5(4), 
pp.397-404, 1995. 

16. Matsumoto, Élia, "MATLAB: Fundamentos de 

Programação", Editora Érica, São Paulo, 2001. 
17. Vinson, J. R. & Sierakowski, R. L. (1986). 

"The behaviour of Laminated Anisotropic 

Plates", Technomic Publishing Company, Inc. 
18. Chandrashekhara, k. et al (1990), "Free 

vibration of Composite Beams Including 

Rotary Inertia and Shear Deformation",  
Composite Structures, Vol. 14, pp. 269-279. 


